

Workshop Guide: Rapid Mix Design of Cement-Treated Base

Product 0-7027-P3

Cooperative Research Program

TEXAS A&M TRANSPORTATION INSTITUTE COLLEGE STATION, TEXAS

sponsored by the Federal Highway Administration and the Texas Department of Transportation https://tti.tamu.edu/documents/0-7027-P3.pdf

Workshop Guide: Rapid Mix Design of Cement-Treated Base

lime and Resources

Product 0-7027-P3

by

Ross Taylor, Texas A&M Transportation Institute Stephen Sebesta, Texas A&M Transportation Institute

Project 0-7027 Project Title: Accelerating Mix Designs for Base Materials

August 2023

Table of Contents

 Background 	3-4
 Objectives of Rapid Method 	5-6
 Method Harmonization 	7-9
 Accelerated Method 	10-24
 Example Field Project Results 	25-29
Questions	30-31

Time and Resources

Background

Current Method

- Current method is Tex-120-E
- Requires unconfined compressive strength (UCS) testing of each cement content in triplicate
- Each specimen ~20 lb of material
- Minimum 1 week test turnaround time for strength testing alone
- Particularly for road-mix applications, covering anticipated materials variability can add up to requiring large amounts of sample

Representative Tex-120-E Specimens

Objectives of Rapid Method

Objectives of Rapid Mix Design Method

lime and Resources

- Reduce the testing burden
- Use less materials
- Produce mix design results faster
- Use with materials for both plant- and road-mix projects
- Harmonize mix design approach, to the extent reasonable, across stabilizer types

Cement-treated base specimen for rapid mix design

Method Harmonization

Test Method Harmonization

- Switch to 4×2 indirect tensile (IDT) strength test specimen
 - Materials for 1 traditional 6×8 specimen will yield 6 specimens for IDT strength testing
- Accelerate curing schedule
 - 72-hr cure at elevated temperature to reduce test turnaround time
 - Tex-122 and Tex-134-E (for emulsion and foamed asphalt) use similar test specimen and curing schedule

IDT Strength & UCS Relationship

Time and Resources

- A relationship exists between IDT strength and Tex-120-E UCS
- Non-material-specific relationship for cement-treated base materials

 $UCS = 5.1 * IDT_3$

UCS = Tex-120-E unconfined compressive strength, psi IDT₃ = Accelerated cure indirect tensile strength, psi

UCS vs. IDT Strength for Cross Section of Materials

Accelerated Method

Overview, Advantages, and Procedural Steps

Overview of Procedure

- Compact 6 4×2 IDT strength test specimens at each treatment rate
- Cure 72 hours at 104°F
 - For cement stabilization, cure in airand watertight container or bag
- Condition 24 hours by submersion in water
- Perform IDT strength test after conditioning

IDT Strength Specimens

Advantages of New Procedure

Time and Resources

- Decrease material sample quantities
- Speed up test turnaround time
- Harmonize test scope with other treatment methods for base materials

Test	Quantity & Dimension of Test Specimen	Material Required (lb)*	Test Turnaround Time (Days)*
Тех-120-Е	9 - 6×8	180	7
Accelerated Design Method for Cement	18 - 4×2	54	4
Tex-122-E & Tex-134-E	18 - 4×2	54	4

*Note: Material required and test turnaround time for strength test specimen only.

Rapid Mix Design of Cement-Treated Base – Proposed Tex-120-E Part III

- Material sampling and preparation
- Moisture density curve
- Mixture design
 - Sample preparation
 - Treatment
 - Compaction
 - Curing
 - Conditioning
 - Testing
- Reporting

Test Procedure for

lime and Resources

RAPID MIX DESIGN OF CEMENT TREATED BASE

by

Stephen Sebesta Research Scientist Texas A&M Transportation Institute

Ross Taylor Research Specialist III Texas A&M Transportation Institute

and

Jinho Kim Associate Transportation Researcher Texas A&M Transportation Institute

Product 0-7027-P2B Project 0-7027 Project Title: Accelerating Mix Designs for Base Materials

Performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration

August 2023

TEXAS A&M TRANSPORTATION INSTITUTE The Texas A&M University System College Station, Texas 77843-3135 Product 0-7027-P2B contains complete steps for procedure

Material Sampling & Preparation

Time and Resources

- Sampling
 - Minimum 1 gallon of cement
 - Minimum 200 lb of in-place roadway material
 - When the RAP layer is greater than 2 in., separate RAP and base materials
 - When testing stockpile material, sample a minimum of 200 lb
- Preparation
 - Prepare material in accordance with Tex-101-E, Part II
 - Sieve sizes used:
 - 1-3/4", 1-1/4", 7/8", 5/8", 3/8", No. 4, No. 40, Pan (or passing No. 40).

Example Aggregates of Different Sizes

Moisture-Density Curve

Time and Resources

- Determine the optimum moisture content and maximum dry density in accordance with Tex-113-E
- Material for moisture-density (M-D) curve is treated with 3% cement
 - Different rate may be directed to use in M-D curve

Example M-D Curve Specimen after Compaction

Mixture Design – Sample Preparation

lime and Resources

- Select a minimum of 3 cement contents
- Produce an 18-lb sample for each cement content
- Replace any aggregate retained on the 7/8" sieve with equivalent material retained on the 5/8" sieve
 - Aggregate replacement maintains reasonable maximum aggregate size relative to smaller-diameter test specimen
- Adjust the moisture content for each cement content
- Both aggregate replacement and moisture adjustment are automatically calculated in new Tx120p3 template
- After adding water to sample, cover and allow to stand for 18-24 hours

MIXTURE DESIGN PROPERTIES 123.5 Max Dry Density, (pcf) Optimum Moisture Content, (%) 6.9% Fex-113-E Cement Content, (%) 2.0% Mixture 1 Mixture 2 Mixture 3 Mixture 4 Cement Content, (%) 2.0% 3.0% 4.0% 6.0%

TEXAS DEPARTMENT OF TRANSPORTATION

IDT Weigh-Up

SAMPLE WEIGH-UP								
Sampl	е Туре		4x2 IDT		Aggregate Weight		18.000	
Material	Salvage	Base 1	Flexible Bas	e (Stockpile)				
Description	SE	-2	Marble Falls	stockpile 642				
	Portion, (%)	75.0%	Portion, (%)	25.0%	Portion, (%)		Portion, (%)	
Sieve Sizes	Individua	al Weight	Individua	al Weight	Individua	al Weight	Individu	ial Weight
	Modified Gr	adation, (lb)	Modified Gr	adation, (lb)	Modified Gradation, (lb)		Modified G	iradation, (lb)
1 3/4	0.000		0.000					
1 1/4	0.0	000	0.000					
7/8	0.0	000	0.0	000				
5/8	0.0	51	1.1	.52				
3/8	1.4	72	0.7	97				
#4	1.8	36	0.7	/61				
#40	3.4	97	1.2	265				
Pan	5.8	46	0.5	527				
Total	0.0	00	0.0	000				

SAMPLE WEIGHTS							
Mixture 1 Mixture 2 Mixture 3 Mixture 4							
Weight Dry Aggregate, (lb)	18.000	18.000	18.000	18.000			
Water, (lb)	1.267	1.326	1.385	1.507			
Cement, (lb)	0.360	0.540	0.720	1.080			
Single Sample Wet Weight, (lb)	1.920	1.920	1.920	1.920			

Mixture Design – Treatment Application

- Reweigh wetted sample after standing time and replace evaporated water
- Place sample into mechanical mixer or mixing pan
- Add cement uniformly and mix thoroughly
- After mixing cement into sample, do not allow the mixture to stand for any period of time
- Immediately start the compaction process

Adding Cement into Material for Mixing Using a Mechanical Mixer

Mixture Design – Trial Specimen Compaction

- Estimate the weight for a trial specimen using the M-D curve
 - Template provides a starting weight to achieve 100% density
- Compact a trial specimen
- Adjust the specimen weight if the specimen is not 2 ± 0.1 in. height
 - Template provides height adjustment calculation

TRIAL SAMPLE INFORMATION				
Sample Type:	4x2			
Single Sample Weight, (lb)	1.920			
Trial Sample Height, (in)	2.11			
Corrected Sample Weight, (lb)	1.820			

- Superpave gyratory compactor compaction parameters
 - 2-in. (50.8-mm) height

- Do not exceed 200 gyrations
- Unheated 4-in. (100-mm) diameter mold
- 600-kPa compaction pressure
- 30 gyrations per minute
- 1.25° compaction angle

Mixture Design – IDT Specimen Compaction

Time and Resources

- Compact 6 total specimen that meet height tolerance
- Record for each specimen:
 - Weight after molding, lb
 - Height*,* in.
- After compaction, seal each specimen in an air- and watertight bag or container

Extruding a 4×2 IDT Strength Test Specimen

Mixture Design – Curing

- Cure sealed test specimens at 104 ± 5°F for 72 ± 2 hours
- After curing, remove specimens from sealed containers

Cement-Treated Specimens Sealed in Zip-Top Bags for Curing during Mixture Design

Mixture Design – Moisture Conditioning

Time and Resources

- Place each specimen in a container large enough to completely submerge the specimen
- Fill the container with water to 0.5 to 1 in. above the top of the specimen
- Soak each specimen for 24 hours ± 15 minutes

Soaking Specimens

Mixture Design – IDT Strength Testing

Time and Resourc

- IDT strength test in accordance with Tex-226-F
 - 2 in. per minute loading rate
- Record peak load, lb
- Calculate and report IDT strength

$$IDT = \frac{2 * F}{3.14 * h * d}$$

IDT = Indirect tensile strength, psi

- F = Total applied vertical load at failure, lb
- h = Height of specimen, in.
- d = Diameter of specimen, in.

	TEST SPECIMEN INFORMATION				IDT TEST DATA: Tex-226-F			
	Sample Number	Weight After Molding, (lb)	Height, <mark>(</mark> in)	Wet Density, (lb/ft3)	Conditioning	Max Load, (lb)	IDT Strength, (psi)	Average, (psi)
	1	1.886	2.030	127.8		847.9	66.48	
	2	1.889	2.040	127.3		813.2	63.44	
Mixture 1	3	1.889	2.030	128.0	Wot	906.8	71.09	70
WIXTURE I	4	1.886	2.020	128.4	vvet	1006.2	79.28	/0
	5	1.884	2.030	127.6		998.5	78.28	
	6	1.889	2.010	129.2		800.9	63.42	
	1	1.883	2.010	128.8		1481.4	117.30	
	2	1.885	2.030	127.7		1384.6	108.55	116
Mixturo 2	3	1.880	2.010	128.6	Wet	1654.7	131.02	
Wixture 2	4	1.882	2.010	128.8		1322.1	104.69	
	5	1.886	2.010	129.0		1583.7	125.40	
	6	1.874	2.010	128.2		1397.2	110.63	
	1	1.882	2.020	128.1		1920.8	151.34	
	2	1.872	2.020	127.4		1731.0	136.38	
Mixture 2	3	1.872	2.020	127.4	Wet	1532.3	120.73	125
WIXTURE 5	4	1.882	2.010	128.8	vvet	1808.7	143.22	155
	5	1.882	2.010	128.8		1843.4	145.96	
	6	1.883	2.010	128.8		1405.6	111.30	
	1	1.885	2.010	129.0		1950.7	154.46	
Mixture 4	2	1.888	2.000	129.8		1898.9	151.11	
	3	1.882	2.010	128.8	Wot	2004.4	158.71	154
	4	1.883	2.020	128.2	vvet	1975.6	155.66	104
	5	1.887	2.000	129.7		1888.8	150.31	
	6	1.879	2.010	128.5		1934.6	153.18	

Reporting

- Report the type of cement used
- Report to the nearest 0.1:
 - Design cement content
 - Gradation of aggregate blend
 - Maximum dry density
 - Optimum moisture content
- Report to the nearest whole number:
 - Average IDT strength for moistureconditioned test specimen
 - Percentage of each material used
- Template has inputs for
 - Minimum IDT strength
 - Treatment depth

	MATERIAL GRADATION: Tex-101-E - Part II						
Material	Salvage Base 1	Flexible Base (Stockpile)					
Description	SB-2	Marble Falls stockpile 642					
Sieve Sizes	% Retained	% Retained	% Retained	% Retained			
13/4	0.0%	0.0%					
11/4	1.1%	4.8%					
7/8	1.7%	9.5%					
5/8	3.5%	11.3%					
3/8	10.9%	17.7%					
#4	13.6%	16.9%					
#40	25.9%	28.1%					
Pan	43.3%	11.7%					
Total	100.0%	100.0%					

	DESIGN SUMMARY: Tex-120-E - Part III						
Optimum Moisture Content, (%)	6.9%	Salvage Base 1, (%)	75%				
Maximum Dry Density, (pcf)	123.5	Flexible Base (Stockpile), (%)	25%				
Tex-113-E Cement Content, (%)	2.0%						
Selected Mixture Design	Mixture 1						
Cement Content, (%)	2.0%	Target IDT (conditioned), (psi)	43				
	Lock Selected Design	Average IDT (conditioned), (psi)	82				

QUANTITY ESTIMATOR				
Treatment Depth, (in	10.0			
Treatment Rate Cemen	t (Ib/SY)	18.53		

Selecting Minimum IDT Strength

Time and Resources

 Minimum IDT strength can be determined from the district's historic minimum UCS requirements

Accelerated Mix Design Thresholds by Historic UCS Targets

Tex-120-E UCS (psi)	Accelerated Cure IDT Strength Minimum (psi)
175	34
220	43
300	59
500	98

Example Field Project Results

Field Project – FM 205

- Collected materials for smallsample mix design research
- Reduced cement rate incorporated into test section in eastbound direction
- As-built falling weight deflectometer (FWD) collected

Layout of Field Treatments – FM 205 in March 2022

Time and Resources

General process reported by contractor:

- Day 1: pre-pulverize and correct cross slope
- Day 2: cement treat
- Day 3: finish treated base
- Day 4: place seal coat
- Day 5: place 1st lift of HMA

Cement Treatment March 23, 2022 STA 536+64 to 459+70

FWD Survey on As-Built August 2, 2022

Time and Resources

Summary FWD results in EB Test Sections

Start STA	End STA	% Cement	AVG Deflection (mils)	AVG base E (ksi)
311.15	481	2	7.92	538
481	536.64	2.5	7.94	377
536.64	630	3	7.35	319
630	783.8	3	7.49	541

Average Base Modulus 300+ ksi for All Treatment Rates

Time and Resources

Questions

Questions and Contacts

Stephen Sebesta 979-317-2297

s-sebesta@tamu.edu

Ross Taylor 979-317-1224 ross-taylor@tti.tamu.edu

Time and Resources

Jinho Kim, Ph.D. 979-317-2324 jinho-kim@tti.tamu.edu